ILI Data Interpretation

Emerging Pipeline Technologies – Sept 29th, 2014

Jason Skow

C-FER Integrity Maintenance Planning

- Evaluate factors influencing risk
- Optimize maintenance and inspection programs
- Report to regulators

Calculating the Failure Probability

ILI Performance Metrics

- Probability of Detection (POD)
- Probability of Identification (POI)
- Probability of False Call (POFC)
- Sizing
 - Depth
 - Length
 - Area
 - Burst pressure
- Testing a performance claim vs calculating a performance claim

Probability of Detection

Possible outcomes of an inspection

PO	<i>OD</i>		
	Defect	No Defect	TOTAL
In-line Tool Result Positive (+)	X	W	x+w
In-line Tool Result Negative (-)	у	Z	y+z
TOTAL	n = x + y	w+z	x+y+w+z

$$POD = p(+|defect|) = \frac{x}{n} = \frac{x}{x+y}$$

POD

- Depends on length and depth but not both equally
- Estimating what was missed is it an integrity concern?

Getting the Right Data

- POD depends on what is not in the dig sets
- Scenario 1:
 - a minimum length bell hole targeting defects
 - it is unlikely that undetected defects will be properly represented in the sample
- Scenario 2:
 - extend the length of the dig
 - more length provides more information about undetected defects
- Model the rate of undetected defects

Sizing

- Depth, Length, Area,
 Shape
- Unity Plot
- Errors in two dimensions

Testing the Vendor Claim

- Results in a 'reject' or 'not reject' evaluation
- Minimizes Type I errors
- Pros simple
- Cons does not use expensive data

		Reality		
		False	True	
Hypothesis	Reject	Correct Call	Type I Error	
	Not Reject	Type II Error	Correct Call	

Calculating Performance

Pros:

- Use all available data
 - Specification
 - Excavation data
 - Pull tests
 - Lab tests
- Estimates performance
- Critical feature assessment
- Integrity optimization

- Requires more data

0.80

Defect Shape

C-FER Optimizing Integrity Management

Thank you!